Product Description

Nylon Sleeve, Nylon Coupling,Nylon Gear Sleeve, Nylon Gear Coupling M28-65

Physical character: Made by injection with high quality polyester or mould CSM/SBR. It is desingning and special for all kinds of metal shaft coupling with very good performance of high tensile strength, high wear resistant, high elastic resilience, water resistant, oil resistant and excellent fatigue resilience, high impact resistant etc. We have full sets moulds and supply full range of GR, GS, MT, Hb, HRC, L, NM and Gear J series couplings with high quality and excellet experience. Apply to all kinds of industrial metal shaft coupling.

Specifications:
Material: Polyester, CSM/SBR
Color: Yellow, red, purple, green, black etc.
Surface: Smooth
Tensile strength: 12-55Mpa
Hardness: 80-98Shore A
Elongation: 400%-650%
Density: 1.25g/cm3
Elasticity impact: >25%
Tear strength: 35-155KN/m
CHINAMFG abrasion loss: <0.05cm3/1.61km
Compression set (22h*70oC): <10%
Working temperature: 120oC
Standard size for polyurethane coupling:
GR14, GR19, GR24, GR28, GR38, GR42, GR48, GR55, GR65, GR75, GR90, GR100, GR110, GR125, GR140, GR160, GR180
MT1, MT2, MT3, MT4, MT5, MT6, MT7, MT8, MT9, MT10, MT11, MT12, MT13
HRC70, HRC90, HRC110, HRC130, HRC150, HRC180, HRC230, HRC280
L35, L50, L70, L75, L90/95, L99/100, L110, L150, L190, L225, L276
FALK-R 10R, 20R, 30R, 40R, 50R, 60R, 70R, 80R
Standard size for rubber coupling:
Hb80, Hb95, Hb110, Hb125, Hb140, Hb160, Hb180, Hb200, Hb240, Hb280, Hb315
HRC70, HRC90, HRC110, HRC130, HRC150, HRC180, HRC230, HRC280
L35, L50, L70, L75, L90/95, L99/100, L110, L150, L190, L225
NM50, NM67, NM82, NM97, NM112, NM128, NM148, NM168, NM194, NM214, NM240, NM265
Gear 3J, 4J, 5J, 6J, 7J, 8J, 9J, 10J, 11J
Special size build molding according to the buyer’s drawings
***when you enquiry, pls confirm product’s number and quantity***

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

sleeve coupling

How do Sleeve Couplings Contribute to Reducing Vibrations and Noise in Rotating Equipment?

Sleeve couplings play a significant role in reducing vibrations and noise in rotating equipment. Their design and material properties contribute to damping vibrations and absorbing shocks, resulting in smoother and quieter operation. Here’s how sleeve couplings achieve this:

1. Flexibility and Misalignment Compensation:

Sleeve couplings have a certain degree of flexibility, which allows them to accommodate small misalignments between the connected shafts. When the shafts are misaligned, the sleeve coupling can flex and adjust, reducing the transmission of vibrations from one shaft to the other. By compensating for misalignments, sleeve couplings minimize the generation of vibrations and the resulting noise.

2. Shock Absorption:

During sudden starts, stops, or changes in load, rotating equipment can experience shocks and impact loads. Sleeve couplings have some level of shock absorption capability, which helps dampen the effects of these shocks. By absorbing shocks, sleeve couplings prevent the transmission of high-frequency vibrations and noise to the rest of the system, resulting in a quieter operation.

3. Resilient Material Selection:

The choice of materials used in sleeve couplings also contributes to vibration and noise reduction. Certain materials, such as rubber or elastomers, are known for their damping properties. These materials can be incorporated into the design of sleeve couplings to absorb and dissipate vibrations, effectively reducing noise levels in the system.

4. Uniform Torque Transmission:

Sleeve couplings provide uniform torque transmission between the connected shafts. This balanced torque transmission minimizes torsional vibrations, which can lead to noise generation in the system. By maintaining a smooth torque transfer, sleeve couplings help achieve quieter and more stable operation.

5. Proper Installation and Maintenance:

Proper installation and regular maintenance of sleeve couplings are essential for their optimal performance in reducing vibrations and noise. Ensuring that the coupling is correctly aligned and well-lubricated can further enhance its ability to dampen vibrations and minimize noise levels.

In summary, sleeve couplings contribute to reducing vibrations and noise in rotating equipment by providing flexibility to accommodate misalignments, absorbing shocks, using resilient materials, and ensuring uniform torque transmission. Their ability to mitigate vibrations and noise enhances the overall performance and reliability of the rotating equipment, making them a preferred choice in various industrial applications.

sleeve coupling

How do Sleeve Couplings Ensure Proper Torque Transmission and Minimize Power Loss?

Sleeve couplings ensure proper torque transmission and minimize power loss through their simple yet effective design. The key features that enable this are:

  • Frictional Grip: Sleeve couplings utilize frictional grip between the inner and outer sleeves to transmit torque. When the coupling is tightened around the shafts, the frictional forces ensure a solid connection, allowing torque to be efficiently transferred from one shaft to the other.
  • Tight Fit: Sleeve couplings are designed to have a tight fit around the shafts they connect. This close fit minimizes play or backlash, ensuring that the torque is transmitted accurately without any rotational lag.
  • Material Selection: The material used in the construction of sleeve couplings is chosen to optimize torque transmission and minimize power loss. Commonly used materials like steel or aluminum have excellent mechanical properties, providing high strength and rigidity, which contribute to efficient torque transfer.
  • Non-Slipping Design: The non-slipping design of sleeve couplings prevents relative movement between the shaft and the coupling during operation. This design feature ensures that the torque applied to one end of the coupling is instantaneously transferred to the other end without any energy loss due to slippage.
  • Torsional Flexibility: Sleeve couplings offer some degree of torsional flexibility, allowing them to accommodate small misalignments and angular deflections between the shafts. This flexibility helps prevent stress concentration and mechanical wear, further minimizing power losses.
  • Efficient Contact Area: The contact area between the shaft and the inner bore of the sleeve is maximized, providing an efficient torque transfer path. This ensures that the coupling can handle the rated torque without causing excessive stress on the shafts or coupling itself.

By combining these design features, sleeve couplings offer a reliable and efficient means of torque transmission. The absence of complex moving parts in sleeve couplings reduces friction and mechanical losses, resulting in minimal power loss during operation. Additionally, their simple design and ease of installation contribute to their overall efficiency and effectiveness in various mechanical power transmission applications.

sleeve coupling

Key Design Considerations for Using Sleeve Couplings in Motion Control Systems

When incorporating sleeve couplings into motion control systems, several important design considerations should be taken into account to ensure optimal performance and reliability:

  • Shaft Alignment: Proper shaft alignment is crucial for sleeve couplings to function effectively. Misalignment can lead to increased wear, vibration, and reduced efficiency. Ensuring the shafts are aligned within acceptable tolerances will maximize the coupling’s performance and lifespan.
  • Torque and Speed Ratings: Evaluate the motion control system’s torque and speed requirements to select a sleeve coupling that can handle the specified loads. Overloading the coupling can cause premature failure and compromise system performance.
  • Shaft Size and Fit: Ensure the sleeve coupling’s inner diameter matches the shafts’ outer diameter accurately. An improper fit may result in slippage or decreased torque transmission. The sleeve coupling’s size and fit should be carefully checked during installation.
  • Environmental Conditions: Consider the operating environment’s temperature, humidity, and exposure to dust or corrosive substances. Choose a sleeve coupling material that can withstand these conditions and resist degradation over time.
  • Dynamic Balance: Sleeve couplings should be dynamically balanced to minimize vibration during operation. Unbalanced couplings can lead to increased stress on connected equipment and may cause premature wear and failure.
  • Operating Speed: Be mindful of the motion control system’s operating speed. At high speeds, centrifugal forces may come into play, affecting the coupling’s performance. In such cases, using a flanged sleeve coupling or other high-speed coupling types may be more suitable.
  • Installation and Maintenance: Follow proper installation procedures to ensure the coupling is securely and accurately mounted on the shafts. Routine maintenance should also be performed to check for signs of wear, misalignment, or other issues that might affect the coupling’s performance.
  • Resonance and Damping: Consider the system’s natural frequencies and possible resonance points. Sleeve couplings offer some vibration damping characteristics, but additional measures like tuning and damping elements may be required to avoid resonance issues.
  • System Flexibility: Sleeve couplings offer flexibility to accommodate minor misalignments, but the system’s overall flexibility should be assessed to ensure the coupling’s compensation capabilities do not lead to excessive flexing or bending of other components.

By carefully addressing these design considerations, motion control systems can benefit from the advantages of sleeve couplings, such as simplicity, cost-effectiveness, and misalignment compensation. Ensuring proper selection, installation, and maintenance will contribute to smooth and efficient power transmission, leading to reliable and precise motion control performance.

China wholesaler Nylon Sleeve, Nylon Coupling, Nylon Gear Sleeve, Nylon Gear Coupling M28-65  China wholesaler Nylon Sleeve, Nylon Coupling, Nylon Gear Sleeve, Nylon Gear Coupling M28-65
editor by CX 2024-05-08