Product Description

Customized high quality Nylon Sleeve Flexible gear shaft coupling for hydraulic pump coupling
 

Product Description

 

1. Completely interchangeable with the original

2. Suitable for various mechanical engineering and hydraulic fields

3. Nylon and steel material match, maintenance-free

4. Can compensate axial, radial, and angular installation deviation

 

 

Product Parameters

 

SIZE MOLD TOOTH TORQUE
(H.)
SPEED
(r/min)
MAIN SIZE
SHAFT DIA
(d1, d2)
SHAFT LENGTH
(L1,L2)
L D H D1 D2 E
NL2 1.5/1 28/42 100 6000 9-22 20-45 CUSTOMIZED 55 40 36 4
NL3 1.5/1 34/25 160 6000 9-28 20-60 66 41 38-50 4
NL4 1.5/2 45/32 250 6000 12-38 25-80 84 47 50-60 4
NL5 2 38/36 315 5000 15-42 30-110 93 50 60-67 4
NL6 2/2.5 40/32 400 5000 16-48 40-110 100 51 60-70 4
NL7 2.5/2 36/45 630 3600 16-55 45-110 115 56 70-82 4
NL8 2.5/3 36/45 1250 3600 20-65 50-140 140 70 85-95 4
NL9 3 45/46 2000 2000 20-80 60-170 175 91 120 6
NL10 4 44 3150 1800 38-100 70-210 220 105 157 8

 

Related Products

 

Company Profile

 

FAQ

Q: Can you make the coupling with customization?

A: Yes, we can customize per your request.

Q: Do you provide samples?
A: Yes. The sample is available for testing.

Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.

Q: What’s your lead time?
A: Standard products need 5-30days, a bit longer for customized products.

Q: Do you provide technical support?
A: Yes. Our company has a design and development team, and we can provide technical support if you
need.

Q: How to ship to us?
A: It is available by air, sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

sleeve coupling

Are there Specific Temperature and Torque Limits for Different Sleeve Coupling Materials?

The temperature and torque limits of sleeve couplings can vary depending on the materials used in their construction. Different materials offer different performance characteristics, and selecting the appropriate material is essential to ensure the coupling can withstand the operating conditions. Here are some common sleeve coupling materials and their associated temperature and torque limits:

1. Steel Sleeve Couplings:

Steel sleeve couplings are robust and can handle a wide range of temperatures and torques. They are suitable for applications in industrial machinery, power transmission systems, and various other fields. The temperature limits for steel sleeve couplings typically range from -30°C to 150°C (-22°F to 302°F). The torque limits can vary based on the specific design and size of the coupling but are generally high, making them suitable for heavy-duty applications.

2. Stainless Steel Sleeve Couplings:

Stainless steel sleeve couplings offer better corrosion resistance compared to standard steel couplings. They are ideal for applications where exposure to moisture or aggressive environments is a concern. Stainless steel sleeve couplings often have similar temperature limits to standard steel couplings, ranging from -30°C to 150°C (-22°F to 302°F). The torque limits for stainless steel couplings are also comparable to those of steel couplings.

3. Aluminum Sleeve Couplings:

Aluminum sleeve couplings are lightweight and suitable for applications where reduced inertia is desired. However, they have lower torque and temperature limits compared to steel or stainless steel couplings. The temperature limits for aluminum sleeve couplings typically range from -20°C to 80°C (-4°F to 176°F). Due to their lower torque capacity, aluminum couplings are more suitable for light to moderate-duty applications.

4. Brass or Bronze Sleeve Couplings:

Brass or bronze sleeve couplings offer good corrosion resistance and are often used in marine applications or environments where exposure to saltwater is a concern. The temperature limits for brass or bronze couplings are similar to those of aluminum couplings, ranging from -20°C to 80°C (-4°F to 176°F). Their torque capacity is also limited, making them suitable for light-duty applications.

5. Thermoplastic Sleeve Couplings:

Thermoplastic sleeve couplings are lightweight and provide excellent chemical resistance. They are suitable for use in corrosive environments or applications where non-metallic components are desired. The temperature limits for thermoplastic couplings typically range from -40°C to 80°C (-40°F to 176°F). Their torque limits are generally lower, making them suitable for light-duty or precision applications.

It is essential to check the manufacturer’s specifications and recommendations for each specific sleeve coupling model to determine its temperature and torque limits accurately. Additionally, the application’s operating conditions, such as the presence of shock loads, vibrations, or speed variations, should be considered when selecting the appropriate sleeve coupling material to ensure reliable and long-lasting performance.

sleeve coupling

Are there Sleeve Couplings Suitable for Applications Requiring Electrical Insulation Between Shafts?

Yes, there are sleeve couplings specifically designed to provide electrical insulation between shafts in certain applications. These couplings are known as electrically insulated sleeve couplings. They are used in scenarios where electrical isolation is crucial to prevent the conduction of electric current between connected shafts.

Electrically insulated sleeve couplings typically feature a non-conductive material, such as ceramic or composite, as the coupling element. This material acts as an insulator, effectively preventing electrical contact between the shafts and eliminating the risk of electrical grounding or short circuits.

Applications that commonly require electrically insulated sleeve couplings include:

  • Electric Motors: In electric motor designs, the shaft may extend beyond the motor housing and come in contact with other components. An insulated coupling helps prevent current flow between the motor shaft and other conductive elements, enhancing safety and protecting sensitive components.
  • Generators: Similar to electric motors, generators may also benefit from insulated couplings to prevent electrical paths that could lead to undesired currents or disruptions.
  • High Voltage Equipment: In high voltage or electrical power transmission systems, insulated couplings are used to avoid potential electrical discharge between shafts.
  • Electrical Test Equipment: Test equipment that measures electrical properties may require electrically insulated couplings to ensure accurate readings and avoid interference.

When selecting electrically insulated sleeve couplings, it is crucial to consider the specific electrical requirements of the application. The coupling’s insulation resistance, voltage rating, and temperature capabilities should match the application’s electrical conditions.

Additionally, engineers must consider other factors such as torque requirements, shaft sizes, and misalignment compensation when choosing the appropriate electrically insulated sleeve coupling for their application.

It’s important to consult with coupling manufacturers or industry experts to ensure the selected electrically insulated sleeve coupling meets the desired electrical and mechanical performance requirements.

sleeve coupling

How do you Select the Appropriate Sleeve Coupling for Specific Shaft Connections?

Choosing the right sleeve coupling for specific shaft connections involves considering several critical factors to ensure optimal performance and reliability. Here’s a step-by-step guide to help you select the appropriate sleeve coupling:

  1. Shaft Diameter and Size:

    Start by determining the diameters and sizes of the shafts that need to be connected. Measure the outer diameter of each shaft accurately, as this will determine the inner diameter of the sleeve coupling required.

  2. Shaft Misalignment:

    Assess the level of misalignment between the shafts. If there is minimal misalignment, a standard sleeve coupling may be sufficient. For applications with angular misalignment, consider using a spacer sleeve coupling or a flanged sleeve coupling with improved alignment capabilities.

  3. Torque Requirements:

    Determine the amount of torque that the coupling needs to transmit between the shafts. Ensure that the selected sleeve coupling can handle the torque requirements without exceeding its rated limits.

  4. Operating Speed:

    Consider the speed at which the connected machinery operates. For high-speed applications, flanged sleeve couplings with enhanced radial stiffness are preferable to minimize vibration and ensure smooth operation.

  5. Environmental Conditions:

    Evaluate the operating environment to identify potential challenges such as temperature extremes, exposure to chemicals, or the presence of dust or debris. Choose a sleeve coupling material that can withstand the specific environmental conditions and resist corrosion or wear.

  6. Installation Space and Accessibility:

    Assess the installation space and accessibility around the shafts. If the installation space is limited or the shafts cannot be easily disconnected, consider using split sleeve couplings for easier maintenance and installation.

  7. Cost and Budget:

    Take into account the budget and cost constraints for your project. While standard sleeve couplings are generally the most cost-effective option, investing in a higher-quality coupling may be beneficial for critical applications with specific requirements.

By carefully evaluating these factors, you can determine the appropriate sleeve coupling type and size that matches your specific shaft connections. It is crucial to consult with coupling manufacturers or suppliers to get expert advice and ensure that the selected coupling meets the performance requirements of your application. Proper coupling selection will lead to efficient power transmission, reduced maintenance, and prolonged equipment lifespan in your mechanical system.

China Custom Customized High Quality Nylon Sleeve Flexible Gear Shaft Coupling for Hydraulic Pump Coupling  China Custom Customized High Quality Nylon Sleeve Flexible Gear Shaft Coupling for Hydraulic Pump Coupling
editor by CX 2024-05-09