Product Description

Product Description

Bearing Pin Coupling Rubber-Cushioned Elastic Sleeves
The elastomer insert is equalizing element of coupling. It transmits torque without backlash or vibration. The elastomer insert defines the characteristics of the entire drive system. Backlash is eliminated by the press fit of the elastomer into the hubs. Through variation of the shore hardness of the elastomer insert, the coupling system can be optimized for the ideal torsional characteristics.

LT Pin Coupling Elastic Sleeve (Smooth Bushing)

Part No. Specification Ref. Picture
d D L
LT-8 8 16 10
LT-10 10 19 15
LT-12 12 24 28
LT-14 14 26 28
LT-18 18 35 36
LT-24 24 45 44
LT-30 30 56 56
LT-38 38 71 72
LT-45 45 85 88

ZT Pin Coupling Elastic Sleeve (Four Component Combined Elastic Sleeve)

Part No. d D L Ref. Picture
ZT-8 8 16 10
ZT-10 10 19 15
ZT-14 14 28 27
ZT-18 18 36 35
ZT-24 24 45 44
ZT-30 30 56 55
ZT-38 38 71 72
ZT-45 45 85 88

 

 

FT Pin Coupling Elastic Sleeve Ring (Splited Elastic Ring Gasket)

Part No. d D L Ref. Picture
FT-10 10 20 7
FT-12 12 24 7
FT-14 14 28 7
FT-14 14 29 7
FT-18 18 36 9
FT-18 18 38 9
FT-24 24 45 11
FT-24 24 48 11
FT-28 28 56 15
FT-30 30 56 15
FT-30 30 62 14
FT-38 38 71 18
FT-45 45 91 22
FT-45 45 85 23

Bearing Pin Coupling Rubber-Cushioned Elastic Sleeves

More Products:

Various types of couplings rubber elastomer models are as follows:

MT rubber coupling (MT1-MT13),

GR rubber coupling (GR10-GR180),

GS rubber coupling (GS7-GS90),

T Hexagon back wheel coupling (hexagonal elasticity pad T70 ~ 210).,

the fluid coupling (YOX),

L-type claw coupling hexagonal coupling (L35-L276),

H-type elastic block (H80-H350),

NM couplings elastomer (NM50 -NM214).

HRC Coupling elastomer (HRC60-HRC280).

Gear Sleeve Rubber Coupling Elastomer cushion (gear 4J-10J).

NL inner tooth gear coupling sleeve (NL1-NL10).

Oldham and non-standard high strength Spider rubber coupling. 

Main Products:

custom couplings Plum pad, HRC couplings, Martin couplings, HRC couplings supply elastomer, HRC couplings elastic block, Gear Sleeve Rubber Coupling Elastomer, block rubber supply couplings, coupling rubber parts, coupling is rubber body, ZheJiang custom rubber gear coupling, screw compressor couplings, rubber supply gear couplings, Atlas coupling, screw compressor coupling, ZheJiang  wholesale production of polyurethane gear, supply H-linking couplings, H-shaped elastic block coupling, H-type coupling rubber elastomer blocks

Please inquire us if you need Rubber Coupling Elastomer and other types couplings inserts.

Different  Types  Of  Hydraulic  Seals
Application Type Material
Rod Seals UN  TPU(PU,Polyurethane) 
UNS  TPU(PU,Polyurethane)
UHS  TPU(PU,Polyurethane)
IDU  TPU(PU,Polyurethane)
U+S  PU+NBR
UPH  NBR & FKM
Step Seal  NBR+PTFE
VES  Rubber+Fabric
IDI  PU
ISI  PU
Piston Seals SPG  NBR+PTFE
SPGW  NBR+PTFE
SPGO  NBR+PTFE
KDAS  NBR+PU+POM
ODI  PU
OSI  PU
ODU  PU
Dust Wiper Seals DH/DHS  PU
LBH  NBR & FKM 
J/JA  PU
DKB  NBR & FKM +Metal
DKBI  PU+Metal
DSI  PU
Wear Ring WR  Phenolic Fabric
Xihu (West Lake) Dis. Tape  PTFE
Xihu (West Lake) Dis. Tape  Phenolic Fabric
Buffer Seal HBY  PU+Nylon
Back-up Ring O-Ring  NBR & FKM
X-Ring  NBR & FKM
PTFE Washer  PTFE

Bearing Pin Coupling Rubber-Cushioned Elastic Sleeves

Different   Type   Rotary   Shaft   Oil   Seal
Type Material Lip Spring Feature
TC NBR & FKM Double Lips Single Metal Coverd Rubber
TB NBR Double Lips Single Metal Case
TA NBR Double Lips Single Metal Case
SC NBR & FKM Single Single Double Metal Shell
SB NBR Single Single Metal Case
SA NBR Single Single Double Metal Shell
DC NBR Double Lips Double Double Springs
VC NBR & FKM Single Without Metal Coverd Rubber
VB NBR Single Without Metal Case
TCV NBR Double Lips Single High Pressure
TCN NBR Double Lips Single High Pressure
PTFE PTFE Single & Double Lips Without Stainless steel
HTCL NBR & FKM Double Lips Single Inside thread L
HTCR NBR & FKM Double Lips Single Inside thread R
……………………………………………………………………………………………
More types please contact us. 
Customization is welcome.

Related Products

Bearing Pin Coupling Rubber-Cushioned Elastic Sleeves
Oil seals serve to prevent the leakage not only of lubricants, but also water, chemicals, and gas from “gaps” in machinery. Oil seals also serve to prevent the intrusion of dust, soil and sand from the outside air.

Company Profile

HangZhou CHINAMFG Sealing Sci-Tech Co.Ltd. is a scientific and technological production enterprise integrating R&D, production and sales. Our production plant covers an area of about 2,000 square CHINAMFG and has 150 employees.

QMS (Quality Management System):
ISO9001, ISO/TS16949

Our Products: 
O Ring, Oil Seal, Hydraulic & Pneumatic Seal, Custom CHINAMFG Parts

Production Standard: 
ASTMD2000

Product Application Scope:
Engineering machinery, hydraulic pneumatic, petroleum and natural gas, automobile seals, valves and pipelines, electronic home appliances, food grade, electric power, chemical industry, coal mine, metallurgy, engineering shield machine and other industries, supporting domestic automobile and machinery manufacturers.

We had sell to:  
More than 40 countries including the United States, Germany, Japan, Britain, Italy, Spain, Russia, Canada, Australia, Malaysia, Philippines, Indonesia, Mexico, Brazil, Peru, Chile, Argentina, Israel, Saudi Arabia, Lebanon, Ukraine, Pakistan, Thailand, Vietnam, etc. 

Packaging & Shipping

Bearing Pin Coupling Rubber-Cushioned Elastic Sleeves
Ship by express, by air, by sea at buyer’s option.
 rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer

FAQ

Q 1. What’s the payment term?
A: We accept T/T 50% deposit and 50% balance against copy of B/L or L/C at sight, West Union,VISA,Paypal is also accepted. rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer
Q 2. What is the normal lead time for product orders?
A: Generally it is 1-2 days if the goods are in stock. or it is 5-10 days if the goods are not in stock, it is according to quantity.tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal

 tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture

 Q 3. What is your standard packing?
A: All the goods will be packed by carton box and loaded with pallets. Special packing method can be accepted when needed.rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer

Q 4. Could you please tell us the month capacity of your products ?
A: It depends on which model, we produce more than 2500 tons rubber materials per month.

tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q 5. what kind of certificates you have ?
A1: We have been ISO9001:2008 and ISO14001:2004 certified by SGS since 2015.
A2: We have various rubber compounds approved by ROHS and REACH.

tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q6: How to check the quality of the bulk order?
A1: We provide preproduction samples before mass production for all customers if needed.
A2: We accept third party inspection such as TUV, INTERTEK, BV, etc.

tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q 7: Do you use any international standards for the rubber products?
A: Yes, we mainly use ASTM D2000 standard to define the quality of the rubber materials, tolerances as per ISO3302, ISO2768, etc.rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer

Q8: What materials are available to produce from your side?
A: NBR, EPDM, SILICONE, FPM(FKM), NEOPRENE(CR), NR, IIR, SBR, ACM, AEM, Fluorosilicone(FVMQ), FFKM, Liquid Silicone, Sponge, etc. tc oi
l seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture

Q9: Do you provide maintenance on tooling?
A: We maintain all tooling and will replace as needed.tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture

Q10: How many empolyees you have?
A:We have 150 empolyees at time of December 2571. tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture

If you have any other question, please don’t hesitate to contact us:

Bearing Pin Coupling Rubber-Cushioned Elastic Sleeves /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

sleeve coupling

How do Sleeve Couplings Contribute to Reducing Vibrations and Noise in Rotating Equipment?

Sleeve couplings play a significant role in reducing vibrations and noise in rotating equipment. Their design and material properties contribute to damping vibrations and absorbing shocks, resulting in smoother and quieter operation. Here’s how sleeve couplings achieve this:

1. Flexibility and Misalignment Compensation:

Sleeve couplings have a certain degree of flexibility, which allows them to accommodate small misalignments between the connected shafts. When the shafts are misaligned, the sleeve coupling can flex and adjust, reducing the transmission of vibrations from one shaft to the other. By compensating for misalignments, sleeve couplings minimize the generation of vibrations and the resulting noise.

2. Shock Absorption:

During sudden starts, stops, or changes in load, rotating equipment can experience shocks and impact loads. Sleeve couplings have some level of shock absorption capability, which helps dampen the effects of these shocks. By absorbing shocks, sleeve couplings prevent the transmission of high-frequency vibrations and noise to the rest of the system, resulting in a quieter operation.

3. Resilient Material Selection:

The choice of materials used in sleeve couplings also contributes to vibration and noise reduction. Certain materials, such as rubber or elastomers, are known for their damping properties. These materials can be incorporated into the design of sleeve couplings to absorb and dissipate vibrations, effectively reducing noise levels in the system.

4. Uniform Torque Transmission:

Sleeve couplings provide uniform torque transmission between the connected shafts. This balanced torque transmission minimizes torsional vibrations, which can lead to noise generation in the system. By maintaining a smooth torque transfer, sleeve couplings help achieve quieter and more stable operation.

5. Proper Installation and Maintenance:

Proper installation and regular maintenance of sleeve couplings are essential for their optimal performance in reducing vibrations and noise. Ensuring that the coupling is correctly aligned and well-lubricated can further enhance its ability to dampen vibrations and minimize noise levels.

In summary, sleeve couplings contribute to reducing vibrations and noise in rotating equipment by providing flexibility to accommodate misalignments, absorbing shocks, using resilient materials, and ensuring uniform torque transmission. Their ability to mitigate vibrations and noise enhances the overall performance and reliability of the rotating equipment, making them a preferred choice in various industrial applications.

sleeve coupling

How do Sleeve Couplings Compare to Other Coupling Types, such as Flexible or Rigid Couplings?

Sleeve couplings, flexible couplings, and rigid couplings are three common types of couplings used in mechanical power transmission. Each type has its unique characteristics and applications. Here’s a comparison of sleeve couplings with flexible and rigid couplings:

  • Sleeve Couplings: Sleeve couplings are simple and cost-effective couplings that join two shafts end-to-end. They provide some flexibility to accommodate slight shaft misalignments and are suitable for low to moderate torque applications. They are easy to install and do not require extensive maintenance. However, they have limited misalignment compensation and cannot handle significant shaft offsets.
  • Flexible Couplings: Flexible couplings are designed to handle greater misalignments compared to sleeve couplings. They can accommodate angular, parallel, and axial misalignments, providing higher flexibility. Flexible couplings dampen vibrations and reduce shock transmission, contributing to smoother operation. They are available in various designs such as elastomeric, beam, and disc couplings, each offering specific benefits. Flexible couplings are ideal for applications where misalignments, vibrations, or shock loads are significant.
  • Rigid Couplings: Rigid couplings are designed to connect shafts in a straight and rigid manner, without any flexibility. They provide accurate shaft alignment, making them suitable for precision applications. Rigid couplings are robust and transmit torque with high efficiency. However, they cannot accommodate misalignments and are susceptible to vibrations and shocks. Rigid couplings are commonly used in applications where precise shaft alignment is critical.

Choosing the appropriate coupling type depends on the specific requirements of the application:

  • Alignment Requirements: If the application demands accurate shaft alignment and no misalignment compensation is needed, rigid couplings are suitable. For moderate misalignments, sleeve couplings may be sufficient, while flexible couplings are preferred for significant misalignments.
  • Vibration and Shock Damping: If vibration and shock absorption are essential, flexible couplings are preferred due to their ability to dampen vibrations. Sleeve couplings have limited vibration damping capabilities, while rigid couplings do not dampen vibrations.
  • Torque and Load: For low to moderate torque and loads, sleeve couplings are cost-effective choices. For higher torque applications with misalignment compensation, flexible couplings are preferred. Rigid couplings are suitable for high torque and precise alignment applications.

In summary, sleeve couplings provide a basic connection between shafts with limited misalignment compensation. Flexible couplings offer higher misalignment accommodation and vibration damping, making them versatile for various applications. Rigid couplings excel in precise shaft alignment requirements but lack flexibility and shock absorption.

sleeve coupling

How do you Select the Appropriate Sleeve Coupling for Specific Shaft Connections?

Choosing the right sleeve coupling for specific shaft connections involves considering several critical factors to ensure optimal performance and reliability. Here’s a step-by-step guide to help you select the appropriate sleeve coupling:

  1. Shaft Diameter and Size:

    Start by determining the diameters and sizes of the shafts that need to be connected. Measure the outer diameter of each shaft accurately, as this will determine the inner diameter of the sleeve coupling required.

  2. Shaft Misalignment:

    Assess the level of misalignment between the shafts. If there is minimal misalignment, a standard sleeve coupling may be sufficient. For applications with angular misalignment, consider using a spacer sleeve coupling or a flanged sleeve coupling with improved alignment capabilities.

  3. Torque Requirements:

    Determine the amount of torque that the coupling needs to transmit between the shafts. Ensure that the selected sleeve coupling can handle the torque requirements without exceeding its rated limits.

  4. Operating Speed:

    Consider the speed at which the connected machinery operates. For high-speed applications, flanged sleeve couplings with enhanced radial stiffness are preferable to minimize vibration and ensure smooth operation.

  5. Environmental Conditions:

    Evaluate the operating environment to identify potential challenges such as temperature extremes, exposure to chemicals, or the presence of dust or debris. Choose a sleeve coupling material that can withstand the specific environmental conditions and resist corrosion or wear.

  6. Installation Space and Accessibility:

    Assess the installation space and accessibility around the shafts. If the installation space is limited or the shafts cannot be easily disconnected, consider using split sleeve couplings for easier maintenance and installation.

  7. Cost and Budget:

    Take into account the budget and cost constraints for your project. While standard sleeve couplings are generally the most cost-effective option, investing in a higher-quality coupling may be beneficial for critical applications with specific requirements.

By carefully evaluating these factors, you can determine the appropriate sleeve coupling type and size that matches your specific shaft connections. It is crucial to consult with coupling manufacturers or suppliers to get expert advice and ensure that the selected coupling meets the performance requirements of your application. Proper coupling selection will lead to efficient power transmission, reduced maintenance, and prolonged equipment lifespan in your mechanical system.

China Professional Bearing Pin Coupling Rubber-Cushioned Elastic Sleeves  China Professional Bearing Pin Coupling Rubber-Cushioned Elastic Sleeves
editor by CX 2024-02-14